ICC訊 記者從中國科學(xué)技術(shù)大學(xué)獲悉,該校郭光燦院士團隊的董春華教授研究組將光力微腔與磁振子微腔直接接觸,證明該混合系統支持磁子—聲子—光子的相干耦合,進(jìn)而實(shí)現了可調諧的微波—光波轉換。研究成果日前發(fā)表在國際學(xué)術(shù)期刊《物理學(xué)評論快報》上。
不同的量子系統適合不同的量子操作,包括原子和固態(tài)系統,如稀土摻雜晶體、超導電路、釔鐵石榴石或金剛石中的自旋。通過(guò)將聲子作為中間媒介,可以實(shí)現對不同量子系統的耦合調控,最終構建能發(fā)揮不同量子系統優(yōu)勢的混合量子網(wǎng)絡(luò )。
目前,光輻射壓力、靜電力、磁致伸縮效應、壓電效應已被廣泛用于機械振子與光學(xué)光子、微波光子或磁子的耦合。這些相互作用機制促進(jìn)了光機械領(lǐng)域和磁機械領(lǐng)域的快速發(fā)展。在前期工作中,研究組利用釔鐵石榴石微腔中的磁振子具有良好的可調諧特性,結合磁光效應實(shí)現了可調諧的單邊帶微波—光波轉換。但是由于目前磁光晶體微腔的模式體積大、品質(zhì)因子難以進(jìn)一步突破,從而限制了磁光相互作用強度,導致微波—光波轉換效率較低。相比之下,腔光力系統雖已實(shí)現高效的微波—光波轉換,但由于缺乏可調諧性,在實(shí)際應用中會(huì )受到限制。
研究過(guò)程中,科研人員開(kāi)發(fā)了一種由光力微腔和磁振子微腔組成的混合系統。系統中可以通過(guò)磁致伸縮效應對聲子進(jìn)行電學(xué)操控,也可以通過(guò)光輻射壓力對聲子進(jìn)行光學(xué)操控,而且不同微腔內的聲子可以通過(guò)微腔的直接接觸實(shí)現相干耦合?;诟咂焚|(zhì)光學(xué)模式對機械狀態(tài)的靈敏測量,課題組實(shí)現了調諧范圍高達3吉赫茲的微波—光學(xué)轉換,轉換效率遠高于以往的磁光單一系統。此外,研究組觀(guān)測了機械運動(dòng)的干涉效應,其中光學(xué)驅動(dòng)的機械運動(dòng)可以被微波驅動(dòng)的相干機械運動(dòng)抵消。
這一研究成果提供了一種有效進(jìn)行操控光、聲、電、磁的混合實(shí)驗平臺,有望在構建混合量子網(wǎng)絡(luò )中發(fā)揮重要作用。